
PatrolBot
Revised Specification and Design

University of Nevada, Reno
Department of Computer Science and Engineering

Team 08
Jesus Aguilera, Brandon Banuelos, Connor Callister, Max

Orloff, Michael Stepzinski

Instructors: Devrin Lee, Dr. David Feil-Seifer, Vinh Le

Advisors: Dr. Hung La, Dr. Alireza Tavakkoli, Officer Matthew
Stewart

February 18th, 2022



Abstract

The PatrolBot project is about creating a semi-autonomous patrol robot. The PatrolBot project is
intended to be an essential tool for campus police forces and other small security operations in
properly monitoring their grounds. The project will utilize a robot connected to the internet, a
web server, a website, and machine learning models. Our team must implement a web server,
control a robot through the internet, build the front-end of our website, connect everything within
the backend, and train then deploy the machine learning models. The purpose of this document is
to describe our project's specifications and design.



Recent Project Changes

There are no new changes to our project since the last submission.



Updated Specification

Summary of changes in project specification
Since the specification document written last fall, the methods by which we aim to accomplish
our project have changed, although the end result will still be the same. This has led to only a
few of our requirements changing to reflect our new design. In the document this past fall, all of
our requirements were based on having an integrated one-system solution where the server,
machine learning models, and user interface would all be on a raspberry pi connected to our
robot. Using this plan, we were able to accomplish our goals in last semester’s demo, however,
our entire system ran much too slow to be usable. To speed up our system, our new version of
the project uses a networked approach instead. Our project will still fulfill the same requirements
as last semester, new ones reflecting our changed approach are added.

Updated technical requirements

Functional Requirements

Table 1: Functional Requirements for the PatrolBot.

ID Level Description

FR00 1 When malicious objects are detected, a medium threat alert will be made on
the interface

FR01 1 When malicious objects are near bikes, a high level threat alert will be
made

FR02 1 When suspicious activity is detected, a low threat alert will be made

FR03 1 PatrolBot shall identify objects of interest through live video

FR04 1 PatrolBot shall allow users to activate and deactivate the object detection
model

FR05 1 PatroBot shall allow user to decide what objects are to be detected from set
list of available objects

FR06 1

FR07 1 The PatrolBot dashboard shall include past recordings accessible from the



side navigation panel.

FR08 1 PatrolBot shall allow the user to customize the dashboard to their individual
liking.

FR09 1 PatrolBot will stream video feed from the robot to the web application

FR10 1 PatrolBot will show estimated robot location

FR11 1 PatrolBot will use odometry readings to help with location tracking

FR12 1 PatrolBot shall operate using a robot and a camera setup

FR13 1 PatrolBot shall have the option to be manually controlled through the web
application

FR14 1 Multiple users shall be able to view the PatrolBot dashboard at once

FR15 2 When alerts are made over a certain level, alerts can be sent to users’
phones

FR16 2 PatrolBot shall maintain a text log of objects detected and time stamp

FR17 2 The PatrolBot dashboard shall allow account creation.

FR18 2 PatrolBot will utilize a camera that can pan around its environment.

FR19 2 PatrolBot shall use a Kalman filter to fuse GPS and odometry data for
location estimation

FR20 2 PatrolBot shall utilize ROS for semi-autonomous navigation

FR21 3 PatrolBot shall traverse campus with full autonomy.

FR22 3 PatrolBot shall deliver web-based notifications through the dashboard when
a potential threat is computed.

FR23 3 PatrolBot shall be developed using custom hardware

FR24 3 A separate model will be able to predict the likelihood that an individual
will steal

FR25 3 PatrolBot will use multiple robots



Non-Functional Requirements

Table 2: Non-functional Requirements for the PatrolBot.

ID Level Description

NFR00 1 PatrolBot will be able to run for at least an hour nonstop

NFR01 1 PatrolBot’s dashboard will be easy to navigate

NFR02 1 PatrolBot will be implemented in Python.

NFR03 1 PatrolBot will utilize the tensorflow/pytorch platforms.

NFR04 1 PatrolBot will utilize ROS for robot communication.

NFR05 1 PatrolBot will use a Raspberry Pi 4 as a microcontroller.

NFR06 1 PatrolBot shall have an intuitive and beautiful looking dashboard.

NFR07 1 PatrolBot shall use Ubuntu 18.04 LTS for the robot computer

NFR08 2 PatrolBot will utilize video feed gathered from the robot to determine a
potential threat.

NFR09 2 PatrolBot shall use AWS SageMaker to deploy the machine learning model
for improved complexity and computational power.

NFR10 2 PatrolBot shall use AWS IoT Roborunner to maintain the robot



Updated use case modeling

Use Case Diagram

Figure 1: Use case diagram for user, robot, activity model, and object model.

Detailed Use Cases

Table 3: Detailed Use Case Descriptions.

ID Use Case Description

UC01 CheckForOverlap The model takes in video frames as input and checks if a
malicious object is close to a bike.



UC02 DetectActivity The model takes in video frames as input and predicts what
activity is occuring.

UC03 SendAlert If the models and algorithm detect something is wrong, an alert
will be presented on the interface.

UC04 LoginUser Upon accessing the robot dashboard, the user must login to
access the controls and data of the robot(s). This login checks
for validity of user credentials and either grants or denies
access to the robot dashboard.

UC05 LogoutUser The user may log out from the PatrolBot dashboard and return
to the welcome screen.

UC06 SaveLogFile The user can save the current list of loggable actions from the
machine learning model to a separate text file.

UC07 SaveAlertFile The user can save the current list of computed potential threats
detected from the camera feed to a separate text file.

UC08 DisplayControls The user can switch to the controls page of the program to
command the robot.

UC09 DisplaySettings The user can switch to the settings page of the program to edit
specific settings for the robot and program.

UC10 ScanEnvironment The robot can scan its surroundings using an attached video
camera.

UC11 MoveRobot The user can manually move the robot in a direction.

UC12 GetLocation The user can get the current estimated robot location.

UC13 ViewStream The user can view the camera feed of the robot.

UC14 GetHomeLocation The user can view the location of the robot’s charger and base.

UC15 DetectObjects The model can take in video frames and predict what objects
are present.

UC16 DisplayBoxes The user can decide to enable bounding boxes on the video
feed.

UC17 MoveLocation The robot can turn on the wheels’ motors to move itself.



Requirement Traceability Matrix

U
C
1

UC
2

UC
3

UC
4

UC
5

UC
6

UC
7

UC
8

UC
9

UC
10

UC
11

UC
12

UC
13

UC
14

UC
15

UC
16

UC
17

FR0

FR1

FR2

FR3

FR4

FR5

FR6

FR7

FR8

FR9

FR10

FR11

FR12

FR13

FR14



FR15

FR16

FR17

FR18

FR19

FR20

FR21

FR22

FR23

FR24

Figure 2: This requirements traceability matrix shows the associations between functional
requirements and use cases.



Updated Design

Summary of changes in project design

Since last semester, our project design has changed greatly. Instead of a one-system design
approach, our project is divided between multiple systems. Our project now consists of 4
separate pieces: the user interface, the backend server, the model processing, and the robot. The
user interface will be accessed by means of a website. The backend of that website will run on a
web server hosted with AWS. The machine learning models will run on the same server if
possible, or a different one if the processing load is too much. The raspberry pi attached to the
robot will only have the software necessary for robot controls, camera streaming, and connection
to the server. This approach allows everything to run in real-time at an acceptable speed. This
approach also makes it easier for team development, since one team member can work on the
robot, another can work on the models, another can work on the website, and so on.

Updated high-level and medium-level design

Context Model

Figure 3: PatrolBot high-level context model

Figure 3 illustrates the high-level context of the PatrolBot system, providing the sub-system
relationship of all possible systems. The PatrolBot context model consists of several subsystems
ranging from the user dashboard, on-premise robot, and the application side of the web server.
The PatrolBot’s main system is the AWS elastic beanstalk service. This system is a web
application and mimics the central point of the web server by providing a bridge between the
users, on-premise robot, and the backend machine learning models. The user dashboard
subsystem contains the user viewpoint to all operational consistencies. This includes the login to
enter the user dashboard, a main screen viewpoint of the robot's camera feed, a GPS location of
the robot, and several other dashboard functionalities. The on-premise robot subsystem consists



of a robot traversing around the university campus and providing a live camera feed of bike
racks. The robot will stream the camera feed through its local network and pass it to the web
service for the user to see on the PatrolBot dashboard. The application side of the web
application will be integrated within the elastic beanstalk web server and will be displayed on the
landing page of the user dashboard. This is where the machine learning model will perform its
fundamentals on the camera feed.

Program Units

Table 4: The table lists the programming units under the activity model system.

Activity Model System

save_video() Input: Camera frames
Output: Mp4 file
Exceptions: N/A
Description: The camera frames get saved into a mp4
file, so the activity model system can be run on the
video.

run_model() Input: Mp4 file
Output: Activity and confidence of detection
Exceptions: The camera or model crashes
Interrupts: A stop command is given
Description: The model is run on mp4 files to extract
predicted activities recognized.

send_alert() Input: Threat level
Output: Alert on user interface
Exceptions: N/A
Description: If the model detects threatening actions,
it will send a security alert to warn the user.

check_for_overlap() Input: Bounding box coordinates for bolt cutters or
angle grinders and bikes
Output: True or False
Exceptions: N/A
Description: The algorithm checks for IOU between
the bounding boxes to determine if the objects are on
top of each other.



Table 5: The table lists the programming units under the object detection model system.

Object Detection Model
System

train_model() Input: Dataset of labeled pictures
Output: Trained model
Exceptions: N/A
Description: There is no trained model for bolt cutters
and angle grinders so a custom dataset was created and
used to train a model for object detection.

save_video() Input: Camera frames
Output: Mp4 file
Exceptions: N/A
Description: The camera frames get saved into a mp4
file, so the Object Detection model system can be run
on the video.

run_model() Input: Mp4 file
Output: Bounding boxes around detected objects
Exceptions: The camera/model crashes, the user
turned off bounding box overlay, or the user turned off
the model
Interrupts: A stop command is given
Description: The model is run on mp4 files to extract
bounding boxes for detected objects.

add_to_log() Input: Model output of label of object and time of
detection.
Output: line of text to log file
Exceptions: User turned off specific objects to add to
log file
Description: The user can determine which detected
objects are stored in the log file through settings.

save_logfile() Input: Objects detected and time stamps
Output: .txt file with list of all objects detected and
when they were detected on the camera stream
Exceptions: N/A
Description: The user can decide to save the log file
with time stamps to their device.



Table 6: The table lists the programming units under the web server system.

Web Server

dashboard_view() Input: WSGIRequest (Web server gateway interface
request)
Output: Rendered Template
Exceptions: If the template page does not exist, throw
an error notice or display a 404 page.
Description: When a user logs into the user dashboard,
returns an http response and fills the page with a
dashboard html template page.

welcome_view() Input: WSGIRequest (Web server gateway interface
request)
Output: Rendered Template
Exceptions: N/A
Description: When the user first accesses the page, the
welcome page is rendered.

livefe() Input: WSGIRequest (Web server gateway interface
request)
Output: Streaming http response
Exceptions: Attempts to access camera feed if it exists
and generates a frame by frame sequence. If it is not
able to be accessed, do not generate an http response.
Description: Generates a frame by frame camera feed
and displays a live (streaming) http response to be
displayed on a webpage.

establish_connection() Input: IP address (camera or robot gps module)
Output: Secure connection
Exceptions: Throw error notice when connection is
not able to be established.
Description: Attempts to establish a secure connection
to either the camera for a live feed or robot’s gps
module to display on the main webpage.



send_movement_command() Input: Directional movement command
Output: Robot receives movement command
Exceptions: Robot not activated, robot movement
system not initialized, robot did not move
Description: This program unit sends a command to
the robot to move

Table 7: The table lists the programming units under the Robot system.

Robot Systems

send_power_on_signal() Input: Physical robot power on button
Output: Call to activate_camera() and
activate_movement(), True if calls succeeded
Exceptions: Battery too low to power on
Description: This program unit sends the signal to
begin robot functionalities.

activate_camera() Input: None
Output: Streams camera video feed
Exceptions: Camera missing
Description: This program unit activates the
on-board camera

activate_movement() Input: None
Output: Robot movement system is ready for
commands
Exceptions: Robot not found
Description: This program unit activates the robot
movement.

send_power_off_signal() Input: None
Output: Calls to deactivate each subsystem, True if
calls succeeded
Exceptions: Systems not activated
Description: This program unit sends the signal for
each subsystem to deactivate itself.

recieve_movement_command() Input: Movement command
Output: Robot moves in desired direction
Exceptions: Motor error, wheels did not move



Description: This program unit activates the motors
of the robot to get it to move

begin_video_stream() Input: On command
Output: IP address of robot stream
Exceptions: Camera not found/accessible
Description: This program unit starts the video
stream for the camera

end_video_stream() Input: Off command
Output: Video stream ends
Exceptions: Cannot end video stream
Description: This program unit shuts off the robot
video stream

Data Structures

In order to have an account based approach to the PatrolBot dashboard, the team established an
accounts database with the help of the Django web framework. The current database setup on the
django side is defaulted to using SQLite 3 and is accessible through the web framework using
python scripts or SQL queries. The current setup of the database is structured in table 8 with a
general example for a record.

Table 8: The main structure to the accounts database of the web server.

id password last_login is_superu
ser

username last_n
ame

email is_staf
f

is_acti
ve

date_join
ed

first_n
ame

1 [hash] 2022-02-1
8
01:34:03.
947512

1 patrolbot.
admin

1 1 2022-02-
05
01:18:11
.245134

To train the object detection model, a database has been established. The database is currently
made of around 1,000 images total. In this database, there is an image folder and a labels folder.
The images folder contains all the images from the four classes the team defined. These classes
are people, bikes, bolt cutters, and angle grinders. Each image in this image folder has at least
one example of any class to be identified. Accompanying each image in a separate labels folder
is around 1,000 text files with the coordinates of bounding boxes for each object to be detected in
the corresponding image. An example of these labels is shown in Table 9. Each entry in the text



files has the class of the object in the bounding box, and the coordinates to create the bounding
box based on the center, width, and height of the box.

Table 9: An example of a text label for an object detection database image.

Class X Center Y Center Width Height

1 0.518028846153
8461

0.498798076923
0769

0.90625 0.997596153846
1539

Updated hardware design

Hardware Components Diagram

Figure 4 contains all of the required hardware components of the project and the connections
between them. The “center” of the system is a Raspberry Pi 4 which will act as the
microcontroller for the Rover Zero, stream the video feed to the web application, and
communicate with the GPS module to identify its current location. to process video from the
camera connected to the Pi.

Figure 4: Displays high-level overview of hardware components utilized and their corresponding
connections.



Hardware Components Descriptions

Raspberry Pi 4

Snapshot 1: Shows a top-down view of a Raspberry Pi 4.
Image Source:

https://www.adafruit.com/product/4296?gclid=Cj0KCQiA4b2MBhD2ARIsAIrcB-R_qLp198Y9
3_7QBNF7LkaKsHP8e1atIkdSy9QEkkmC6JDEiAw2JbEaAl4rEALw_wcB

The Raspberry Pi 4 will act as the central system of the project as shown in Snapshot 1. A
top-down view of the Pi is shown in Snapshot 1. It will act as the microcontroller for the Rover
Zero and provide all necessary functionalities with the camera and GPS modules. It will also act
as the “middleman” between the web application and the robot through a shared wireless
network connection.

https://www.adafruit.com/product/4296?gclid=Cj0KCQiA4b2MBhD2ARIsAIrcB-R_qLp198Y93_7QBNF7LkaKsHP8e1atIkdSy9QEkkmC6JDEiAw2JbEaAl4rEALw_wcB
https://www.adafruit.com/product/4296?gclid=Cj0KCQiA4b2MBhD2ARIsAIrcB-R_qLp198Y93_7QBNF7LkaKsHP8e1atIkdSy9QEkkmC6JDEiAw2JbEaAl4rEALw_wcB


Camera

Snapshot 2: Shows the Arducam for Raspberry Pi Camera Module.
Image Source: https://m.media-amazon.com/images/I/61cnX8IvngL._AC_SL1500_.jpg

Snapshot 3: Shows how the Arducam is connected to Raspberry Pi 4.
Image Source: https://m.media-amazon.com/images/I/71XozxuTzcL._AC_SL1500_.jpg

The camera utilized will be the Arducam for Raspberry Pi Camera Module shown in Snapshot 2.
It has a M12 lens to enhance the field of view and allow for higher quality images. It will be
connected directly to the Raspberry Pi 4, as shown in Snapshot 3, to allow Pi to stream live video
feed it is providing to the web application.

https://www.raspberrypi.com/products/camera-module-v2/
https://m.media-amazon.com/images/I/61cnX8IvngL._AC_SL1500_.jpg
https://m.media-amazon.com/images/I/71XozxuTzcL._AC_SL1500_.jpg


GPS Module

Snapshot 4: Shows the GPS Module GPS NEO-6M
Image Source: https://m.media-amazon.com/images/I/71D+goSD3CL._AC_SL1500_.jpg

The GPS Module will connect directly to the Raspberry Pi 4 to allow the Pi to understand its
location which will result in understanding the robot’s location. This GPS data will be filtered
with the odometry data of the robot to provide a more accurate estimation of the robot’s location.

https://m.media-amazon.com/images/I/71D+goSD3CL._AC_SL1500_.jpg


Rover Zero

Snapshot 5: Shows the fully assembled Rover Zero robot.
Image Source:

https://cdn.shopify.com/s/files/1/0055/0433/5925/products/Zero4WD_Pictures_0006_Zero4WD
RobotOnly.png?v=1644961498

The Rover Zero is a fully assembled terrestrial robot equipped with a differential drive motor
system. It includes a built in lithium ion battery, motor driver, motors, and encoder. It is also
equipped with built-in software using ROS to allow for basic communication for a user. Its
battery will power the Pi via USB connection and it will communicate with the Pi’s commands
using ROS and send odometry data to the Pi for localization estimates. It will house all of the
above hardware components on its chassis.

https://cdn.shopify.com/s/files/1/0055/0433/5925/products/Zero4WD_Pictures_0006_Zero4WDRobotOnly.png?v=1644961498
https://cdn.shopify.com/s/files/1/0055/0433/5925/products/Zero4WD_Pictures_0006_Zero4WDRobotOnly.png?v=1644961498


Updated user interface design

Figure 5 shows the initial landing page of the web server main system. This is a separate URL
from the project description website and is used to access the user dashboard.

Figure 5: PatrolBot welcome screen.

Figure 6shows a button that will redirect the user to the detailed project website and is displayed
in the landing page when first attempting to access the user dashboard. This is for when the user
wants to learn more about the main core of the project before accessing the dashboard.

Figure 6: Button that will route the user to the project website.



Figure 7 shows a button that will login the user into the user dashboard and is displayed in the
welcome screen.

Figure 7: Login button.

Users will then be greeted with the login form after clicking the login button. From here, the user
will be able to access the user dashboard after entering the correct superuser account
information. At the time, since there is only one robot there will only be one user in the database.
This is so no other users can create an account without having access to a robot.

Figure 8: Login page for the dashboard.



Figure 9 shows the landing page after the user successfully logs into the user dashboard.

Figure 9: Dashboard landing page after a successful login.

The logout button that will log the user out of the user dashboard. This button is displayed on
every page of the dashboard so the user is able to log out from anywhere.

Figure 10: Logout button that appears on every screen on the dashboard.



The side navigation panel that will redirect the user to several other accessible pages. As the
project progresses and new ideas become available, this side navigation panel will grow with
more options.

Figure 11: Side navigation panel for the dashboard.

The robot camera feed controls displayed on the landing screen of the user dashboard.

Figure 12: Camera feed controls for the camera mounted on the on-field robot.



When the user clicks the robot option in the side navigation panel, the user will be redirected to a
page displayed in figure 13.

Figure 13: Robot configuration landing page accessed by the side navigation panel.

The current robot configuration settings that will display helpful information about the robot. At
the time, it will only display the status (online or offline), the battery percentage, the traversal
model (auto or manual) and the last pinged location in latitude and longitude coordinates.

Figure 14: Robot configuration panel that will display information about the current state of the
robot.



The robot anatomy information that will display each part of the robot.

Figure 15: Robot anatomy panel that shows each part of the robot.

The dashboard settings accessed from the side navigation panel.

Figure 16: Dashboard settings page accessed by the side navigation panel.



Figure 17 shows the video configuration settings for the main screen of the user dashboard. At
the moment, it will allow the user to disable or enable the bounding box object detection overlay
on the camera feed and disable or enable the objection detection model itself.

Figure 17: Video feed configuration option panel.

Figure 18 shows the configurable settings to the model itself. This allows the user to determine
whether the model should classify certain objects for the machine learning model.

Figure 18: Model configuration option panel.



Glossary of Terms

1. Backend - The part of a web application that users do not see.
2. Frontend - The part of a web application that users see.
3. Robot Operating System (ROS) - A popular set of open-source software libraries and

tools used to develop robotic applications.
4. Model - Machine learning algorithms trained on data, used to refer to a specific set of

trained algorithms.
5. Deep Learning - Using a neural network with hidden layers to train models on your data.
6. Machine/Computer Vision - Use of camera, computer hardware, and software

algorithms to automate visual inspection tasks.
7. Angle of View (AOV) - Visual inspection depending on the size of the robot.
8. Autonomous Mobile Robot (AMR) - Robot that utilizes advanced sensors, computer

vision, and machine learning to navigate its environment.
9. Degrees of Freedom - Robots ability to move in a single independent direction of

motion.
10. Neural Network - Machine learning algorithm to mimic the way the biological neurons

signal.
11. Machine Learning (ML) - the use and development of computer systems that are able to

learn and adapt without following explicit instructions, by using algorithms and statistical
models to analyze and draw inferences from patterns in data.

12. Training - In machine learning, training is a process in which an ML algorithm is fed
with sufficient data to learn from.

13. Validation - In machine learning, model validation is referred to as the process where a
trained model is evaluated with a testing data set. The testing data set is a separate portion
of the same data set from which the training set is derived.

14. Testing - In machine learning, model testing is referred to as the process where the
performance of a fully trained model is evaluated on a testing set.

15. Feedback - The return of information from a manipulator or sensor to the processor of
the robot to provide self-correcting control of the manipulator.

16. YOLO (You Only Look Once) - An algorithm that provides real time object detection
17. Angle grinder - A handheld electronic tool with a circular blade meant for grinding or

cutting
18. Bolt cutters - A long-handled tool with blades meant for cutting chains and padlocks
19. Alert - An event the robot(s) deem necessary to notify the user about
20. Threat - An event that the machine learning models running on the robot deems

suspicious
21. Inflated 3D Network - A neural network that relies on training based on multiple frames

at a time rather than single images.



22. Temporal Segment Network - A neural network that breaks down a video into segments
with convolutional networks running on each to combine towards an aggregated
prediction.

23. Kinetics400 - A dataset of at least 400 video clips for 400 different actions
24. GPS Module - A hardware component that sends GPS location info to it’s connected

device.
25. Raspberry Pi - A small computer that plugs into various devices to allow for affordable

computing projects.
26. Odometry - Data acquired from motion sensors to estimate a change in position over

time.
27. Differential Drive - A two-wheeled driving system with independent actuators for each

wheel that allows for the wheels to spin at different speeds.
28. Localization - The process of determining where a robot is located with respect to its

surrounding environment.
29. Intersection Over Union (IOU) - A ratio of area of intersection of two boxes over the

area of union.



Engineering Standards and/or Technologies

Object Detection
PatrolBot is using YoloV5 to perform object detection. YoloV5 is a neural network that can be
trained to detect multiple classes of objects.

Activity Detection
PatrolBot is using MxNet and GluonCV to perform action recognition. These libraries provide
implementations of temporal segment networks and inflated 3D networks trained on activity
datasets. These models will allow PatrolBot to record videos and extract a list of possible
activities being performed to help with threat detection.

Amazon Web Services / AWS
AWS is a subsidiary of Amazon providing on-demand cloud computing platforms and APIs to
individuals, companies, and governments, on a metered pay-as-you-go basis. PatrolBot will
utilize AWS to do all of the computing for the object detection and activity detection models.

PYQT5 / PYQT Designer
PyQt is a Python binding of the cross-platform GUI toolkit Qt, implemented as a Python plug-in.
PatrolBot is utilizing PYQT5 and their drag and drop GUI designer, PYQT Designer, to build our
UI.

Django
Django is a high-level Python web framework that enables rapid development of secure and
maintainable websites. Django is being used to build PatrolBots web application.

Universal Serial Bus / USB
It is an established standard for specifying requirements for cables, connectors, and various
protocols relating to these connections.
In the project a USB cord will be utilized to provide a connection between our robot and a
Raspberry Pi 4 to allow the Pi to act as a microcontroller for the robot.

IEEE 802.11ac / WiFi
This is the current standard for wide area networks that utilize wireless network
communications.
The project will utilize WiFi to establish communication between our robot and our web
application through a Raspberry Pi 4.



Robot Operating System / ROS
This is a technology that is an open-source set of software libraries used for the purpose of
creating robot related applications.
The project will utilize ROS to control the actions, specifically movement, of the robot.



Project impact and context considerations

Social Impact
The social impact of the Patrol Bot would include a safer community for bikes on the UNR
campus as well as a safer community in general. Having a bike stolen from you on campus could
be quite devastating if this is your only form of transportation. The Patrol Bot would reduce
these situations for students and faculty.

Safety Impact
PatrolBot would help make UNR’s campus safer. Theft often involves a confrontation if the
victim sees the thief commiting the crime. Because bike thieves would be deterred from
committing crimes on campus, it would be less likely that physical altercations arise on campus.

Environmental Impact
PatrolBot would allow the UNR police department to survey areas without the need of vehicles.
The past reliance on a deployed officer roaming campus in their police vehicle results in constant
emissions from their vehicle during their shift. A switch to the use of a robot would lessen these
emissions.

Economic Impact
PatrolBot would allow for a greater coverage of space without the need of employing more
officers and utilizing fewer existing officers. After the initial cost of purchasing a fleet of
PatrolBots, future funding could be spent policing different crimes, improving existing
technology, or professional development for officers.



Updated List of References

Problem Domain Book:

Casasent, D. P., Hall, E. L., & Röning, J. (2003). Intelligent robots and computer vision XXI :
algorithms, techniques, and active vision : 28-29 October, 2003, Providence, Rhode Island, USA.

This book details various applicable algorithms for robotic machine vision. This includes
efficient models for mobile intelligent robots built using the fundamentals of deep learning and
computer vision. This book also highlights techniques that will reduce computational complexity
in performing these various algorithms on robot-captured videos using ‘active vision’ as well as
finding the optimal camera calibration parameters.

Reference Articles:

Kevin Carey, Benjamin Abruzzo, Christopher Lowrance, Eric Sturzinger, Ross Arnold, and
Christopher Korpela "Comparison of skeleton models and classification accuracy for
posture-based threat assessment using deep-learning", Proc. SPIE 11413, Artificial Intelligence
and Machine Learning for Multi-Domain Operations Applications II, 1141321 (21 April 2020);
https://doi.org/10.1117/12.2556422

This is a paper that compares different pose detection models used for a threat detection
algorithm. Patrol Bot will most likely use one of these pose detection models for our own
algorithm and this paper gives good information about differences between them.

Kushwaha, A., Kolekar, M., & Khare, A. (2012). Vision based method for object classification
and multiple human activity recognition in video surveillance system. Proceedings of the CUBE
International Information Technology Conference, 47–52.
https://doi.org/10.1145/2381716.2381727.

An algorithm for video surveillance systems that helps better analyze human behavior. Using
object classification and a human activity recognition model, this algorithm can capture specific
human activities from a live and dynamic surveillance system. This conference proceeding can
be used as a reference and standard framework for our projected robot that intends to analyze
human behavior using the same approach.

Fang, M., Li, L., Xu, H., Zhang, F. (2018). Movement human actions recognition based on
machine learning. International Journal Of Online Engineering, 14. 10.3991/ijoe.v14i04.8513

https://www.spiedigitallibrary.org/profile/Kevin.Carey-4232292
https://www.spiedigitallibrary.org/profile/benjamin.abruzzo-4224143
https://www.spiedigitallibrary.org/profile/Christopher.Lowrance-4232297
https://www.spiedigitallibrary.org/profile/Eric.Sturzinger-4232293
https://doi.org/10.1117/12.2556422
https://doi.org/10.1145/2381716.2381727
http://dx.doi.org/10.3991/ijoe.v14i04.8513


This journal discusses using region convolutional neural networks to classify images of human
activity into different categories such as walking, running, and jumping. Additionally, it
discusses using these classifications for security purposes to detect items such as theft or
fighting. Both of these apply directly to the PatrolBot and provide a solid knowledge base for the
project moving forward.

N Bhuvaneswary, S Pravallika, V Jayapriya, & K Himabindu. (2021). Night Surveillance
Military Spy Robot using Raspberry Pi. Annals of the Romanian Society for Cell Biology, 25(5),
5740–5747.

This journal article describes a night surveillance military spy robot that performs various tasks
to elevate security for soldiers. Built using a raspberry pi, this spy robot detects mines, human
activity, and is developed using a night surveillance web camera. This journal article highlights
the importance of developing the robot using a camera specifically for night-time surveillance
and how such a system can be built with a card-sized computer.

Project Related Websites:

http://wiki.ros.org/

This website is the primary resource for simulating and implementing robotics functionalities for
the project. It contains tutorials to learn ROS that will help the team members assigned to the
robotics section of the project develop the tools needed to reach our goals. It also will act as a
resource throughout implementation, expansion, and testing the project’s robotic aspects.

https://www.tensorflow.org/

This website will be the primary resource for implementing our deep learning algorithms to
create a usable model in Python. It includes tutorials to help the machine learning team members
get familiar with its functionalities. It also has a vast number of resources and thorough
documentation for all of its associated libraries.

https://cv.gluon.ai/contents.html

This website provides tutorials for the implementations of activity recognition models as well as
other models which can perform object detection or pose estimation. This will help with the
development of the threat model.

http://wiki.ros.org/
https://www.tensorflow.org/
https://cv.gluon.ai/contents.html


https://roverrobotics.com/

This website provides all the necessary documentation for the robot used in the project. It will
help the team understand the specifications of the robot, built-in software and hardware, and act
as a guide for implementing all robot functionalities.

https://roverrobotics.com/


Contribution of Team Members

Michael
Tasks: Cover page, abstract, recent project changes, summary of changes in project

specification, summary of changes in project design, 3 level 1 FR, 1 level 2 FR, 1 level 3 FR, 1
NFR, 4 use cases, 4 program units

Time: 4 hours

Max
Tasks: 3 level 1 functional requirements, 1 level 2 functional requirement, 1 level 3

function requirement, 3 nonfunctional requirements, 4 use cases, 4 programming units, Social
Impact, 3 Technologies, 2 Reference Articles, Traceability Matrix, editing and formatting

Time: 5 hours

Connor
Tasks: 3 level 1 functional requirements, 1 level 2 functional requirement, 1 level 3

functional requirement, 2 nonfunctional requirements, 4 use cases, 4 programming units, 5
glossary terms, 2 standards, 1 technology, environmental and economic impacts, 1 journal, 1
resource website, 1 problem domain book, high level hardware overview diagram and hardware
component descriptions

Time: 5 hours

Brandon
Tasks: 3 level 1 functional requirements, 1 level 2 functional requirement, 1 level 3

function requirement, 3 nonfunctional requirements, 4 use cases, Use Case Diagram, 4
programming units, Safety Impact, Object Detection Database, 1 Project Related Website, 2
Technologies

Time: 4 hours

Jesus
Tasks: 3 level 1 functional requirements, 1 level 2 functional requirement, 1 level 3

functional requirement, 3 nonfunctional requirement, 4 use cases, context model image and
description, 4 programming units, website database description, User Interface design.

Time: 4 hours


